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I. INTRODUCTION

This report is concerned with calculating the trajectory of the projectile fired from an

electromagnetic launcher, or railgun, which attains supersonic velocity (up to 1500 m/s).

Emphasis is given to the projectile which may carry with it the structure that sustains the

electrical currents that drive the acceleration in the barrel. This structure, or “armature,”

does not possess axisymmetry, and its aerodynamic properties are therefore expected to

be somewhat novel. An important question is whether such a projectile can be accurately

guided toward a target. To address this question theoretically, an advanced exterior ballistics

model is needed. The model must not assume axisymmetry, be able to handle hypersonic

velocities, and incorporate some form of autopilot algorithm.

Generally, a bullet cannot be designed solely based on aerodynamic considerations. Ordi-

nary bullets, before they are even fired, have to take a form compatible with the requirements

of a robust casing. During firing, they have to form a temporary high pressure seal, such

that expanding gases can only escape by pushing the bullet out of the barrel. While in

the barrel, they have to make suitable contact with the rifling, in order to acquire spin. If

it were not for these considerations, one might use a shape such as the Sears-Haack form,

which gives the minimum drag at supersonic speeds [1]. In the case of a railgun, there is no

requirement involving a casing or high pressure seal. Instead, there is a requirement involv-

ing the armature. The armature has roughly a “U” shape, with the two upright segments

of the U forming a sliding contact with the rails. The direction of motion is from the top to

the bottom of the U. One can either let the armature fall away from whatever projectile it

forces out of the barrel, or keep the armature as part of the projectile. The latter scenario

is energetically more efficient, but requires that the armature satisfy whatever aerodynamic

requirements follow from the mission being considered.

The solution of an exterior ballistics problem gives the position and orientation of a

rigid body as a function of time, given a certain set of initial conditions. This involves

solving the equations of motion for a rigid body in the presence of aerodynamic forces and

moments. Determining the aerodynamic forces and moments under a given set of conditions

is extremely complex. Ideally, both numerical solutions of the Navier-Stokes equations,

and experimental measurements, are employed. This report discusses how to systematically

enumerate the aerodynamic forces and moments, how to quantify them based on available
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data, and how to calculate the resultant trajectories.

II. GENERALIZED BALLISTICS MODEL

A. Coordinate Systems and Reference Frames

The equations of motion describing the flight of a projectile take their simplest form in

an inertial frame of reference. A coordinate system fixed with respect to the ground is not

inertial, primarily due to the Earth’s rotation. One can still choose to work in such a frame,

but then new forces, such as the Coriolis force, appear in the equations of motion. An

alternative, which will be employed here, is to work in a frame that has the Earth’s rotation

subtracted out. Such a frame is inertial to a good enough approximation for most purposes.

The coordinates used to describe the components of a vector are distinct from the frame

of reference in which the dynamical equations are expressed. In particular, the coordinate

basis can be changed without changing the form of the equations. There are four bases that

are frequently used in this report. All four bases are illustrated in Fig. 1, which is explained

in detail as follows.

The inertial basis is characterized by basis vectors (i1, i2, i3), which are defined so that

initially, they line up with the Earth system basis vectors (e1, e2, e3). In turn, the Earth

basis is defined so that e1 points down-range horizontally, and e2 points up. The equations

relating the basis vectors, the initial projectile velocity, v0, and the initial gravitational

acceleration, g0, are

i1 = e1(t = 0) =
g′0 × (v′0 × g′0)

|g′0 × (v′0 × g′0)|
(1a)

i2 = e2(t = 0) = − g′0
|g′0|

(1b)

i3 = e3(t = 0) = i1 × i2 (1c)

where the prime is to stress that the velocity and gravitational acceleration are given in the

Earth frame of reference. They can be put in the inertial frame using

v0 = v′0 + ΩE ×RE (2a)

g0 = g′0 + ΩE × (ΩE ×RE) (2b)

where RE is a vector drawn from the center of the Earth to the launch site, and ΩE is the
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FIG. 1: Schematic of the four sets of basis vectors used to describe the projectile flight. The

inertial basis (i1, i2, i3) is fixed by the projectile velocity and gravity at the moment of launch. The

Earth basis (e1, e2, e3) is initially the same as (i1, i2, i3) but rotates with the planetary surface.

The velocity basis (v1,v2,v3) is fixed by the projectile velocity, wind velocity, and gravity. The

body basis (b1,b2,b3) is fixed with respect to the symmetry planes of the projectile.

angular velocity of the Earth. As the Earth rotates, (e1, e2, e3) evolve according to

dei
dt

= ΩE × ei (3)

where i is any of the coordinate indices. Similarly, the launch site moves in the inertial

frame according to
dRE

dt
= ΩE ×RE (4)

Distinguishing the Earth system from the inertial system allows one to consider range scales

that are an arbitrary fraction of the radius of the Earth.

A system of coordinates that rotates with the body is not very useful as a reference frame,

but is indispensible as a coordinate basis. The body basis, (b1,b2,b3), is defined so that

b1 always points in the direction of the nose. For a railgun projectile, b2 is in the plane of

the rail surfaces, and b3 is orthogonal to it. The time evolution of (b1,b2,b3) during the

projectile flight is a primary concern of the ballistics problem, as discussed below.

Finally, the velocity basis, (v1,v2,v3), changes with the projectile velocity, the wind, and
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FIG. 2: Abstract representation of projectile. The moving parts consist of a roll wheel and skid

weight. The roll wheel rotates about the longitudinal axis, but is otherwise fixed in the body. The

skid weight is a movable point mass which is unconstrained for the purposes of analysis.

the gravitational acceleration. If the projectile velocity is v, and the wind velocity is w,

then

v1 =
v −w

|v −w|
(5a)

v2 = v3 × v1 (5b)

v3 =
g × (v −w)

|g × (v −w)|
(5c)

Note that if the net velocity is directly up or down, then v2 and v3 are undefined. As will be

seen below, this turns out to be unimportant, as only v1 is used in the dynamical equations.

B. The Modified Rigid Body Problem

In order for a projectile to have a steering capability, it cannot be entirely rigid. In

this report, steering by means of internal moving parts is considered. The total system is

a rigid body plus an unconstrained point mass, or “skid weight,” and a rotatable ring, or

“roll wheel.” When the skid weight is moved, the center of mass moves, inducing a pitching

moment. When the roll wheel is rotated, a rolling moment is induced. Of course, an energy

source is needed to move these parts. The skid weight is efficient, since it turns the projectile

indirectly, through its effect on aerodynamic forces. The roll wheel, in contrast, is actually

opposed by aerodynamic forces, and so may not be very practical. In this report, the energy

source that moves the internal parts is not considered.

Let r0 be the center of mass of the whole projectile, and let the skid weight position be

d. We define R as where the center of mass would be if the skid weight were absent. It

is convenient to use R as the reference point, because it is fixed with respect to the rigid
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portion of the body. If the mass of the skid weight is δm, then the displacement of the

center of mass is

a ≡ r0 −R =
δm

m
(d−R) (6)

where m is the mass of the whole projectile. The translational motion is described by

P = mv + δmδv +mΩ× a (7a)

Ṗ = F +mg (7b)

Ṙ = v (7c)

where P is the total momentum, v is the velocity of the reference point, F is the sum of all

aerodynamic forces, g is the gravitational acceleration, Ω is the angular velocity, and

δv = ḋ− v − m

δm
Ω× a (8)

is the velocity of the skid weight in the body system of reference [6]. Let the roll wheel

be centered transversely inside the projectile, with inertia tensor δM and angular velocity

Ω + δΩ. Then, the rotational motion is described by

L = MΩ + δMδΩ + a× (P +mδv) (9a)

L̇ = K (9b)

ḃi = Ω× bi (9c)

where L is the total angular momentum, K is the sum of all aerodynamic moments (the

torque), and M is the effective inertia tensor of the system. If the inertia tensor of the rigid

body is M0, then the effective inertia tensor is

M = M0 + δM + (m− δm)


δy2 + δz2 −δxδy −δxδz

−δxδy δx2 + δz2 −δyδz

−δxδz −δyδz δx2 + δy2

 (10)

Here, (δx, δy, δz) are the components of a. It is often convenient to express M0, δM, and

a in the (b1,b2,b3) basis. Naturally, all vectors should be expressed in a consistent basis

before updating the dynamical equations. In particular, the dynamical equations are most

naturally evaluated in the (i1, i2, i3) basis.

Solution of the above system of equations by numerical means presents little difficulty,

provided F and K are known. The primary problem in solving for the projectile motion is to
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determine suitable approximations for F and K as functions of the body momentum, angular

momentum, position, and orientation. This is the purpose of the ballistic coefficients.

III. GENERALIZED BALLISTIC COEFFICIENTS

Ballistic coefficients are usually given for axisymmetric projectiles. The purpose of this

section is to derive extended coefficients that treat the more general case of a two-fold in-

version symmetry. The approach is to utilize symmetry relations in conjunction with a

small angle expansion to deduce the dependence on the body orientation. The dependence

on angular momentum is treated using an expansion in angular velocity. Except for Mag-

nus moments, the orientational and angular momentum dependence is assumed additively

separable. The dependence on position enters as a dependence on the local atmospheric

conditions. The dependence on momentum enters as an overall factor proportional to the

kinetic energy density of the fluid, and as a dependence on Mach number that has to be

tabulated term by term.

A. Terms due to Body Orientation

1. Orientational Expansion

The most general way to write the dependence of a force on an orientation is in terms of

a tensor expansion, i.e.,

F i = ai + bijkT
jk + cijklmT

jkT lm + dijklmnoT
jkT lmT no + · · · (11)

where a, b, c, and d are tensor coefficients that depend on position and Mach number, and

T is a tensor expressing the body orientation[7]. One needs a similar equation for K. The

orientation T ij is expressed in terms of the body and velocity basis vectors according to

T =


b1 · v1 b2 · v1 b3 · v1

b1 · v2 b2 · v2 b3 · v2

b1 · v3 b2 · v3 b3 · v3

 (12)

Note that this is also the matrix of transformation taking a vector expressed in the body

basis into the same vector expressed in the velocity basis.
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FIG. 3: Expressing the unit vector v1 in terms of the angles α and ϕ. The direction of v1 can be

constructed by starting parallel to b1, rotating through an angle α in the 12-plane to form v′1, and

then through an angle ϕ in the 23-plane to form v1. The angles are chosen so v1 is consistent with

Eq. (5).

The expansion (11) involves a great many terms. It is useful to reduce the complexity

by reducing the rank of the tensors involved. The major assumption we make is that only

the first row of T contains information needed to deduce the forces and moments. The

physical justification for this is that v2 and v3 are fixed only by gravity, and gravity affects

the aerodynamic forces and moments very weakly (which is not to say the force of gravity

itself is immaterial). The first row of T is v1 expressed in the body basis, which is itself a

tensor of rank one, i.e., a vector. Let the components of v1 in the body basis be denoted ξi.

Furthermore, define angles α and ϕ such that
ξ1

ξ2

ξ3

 =


cosα

sinα cosϕ

sinα sinϕ

 (13)

This expresses v1 in spherical coordinates that are referenced to (b1,b2,b3), as illustrated

in Fig. 3. The angle α is also what is usually called the total yaw angle, which during gentle

maneuvers is small. Hence, the formal expansion

F i = ai + bijξ
j + cijkξ

jξk + dijklξ
jξkξl + · · · (14)

can be ordered in the small parameter α. Note that the components of the force are given

in the same basis that the ξi are given in, namely the body basis. In this case, one has an

axial force, F 1, in place of the drag force, and normal forces F 2 and F 3, in place of the lift

force. The relationship between velocity basis coefficients, such as the drag coefficient, with

body basis coefficients, is given in the appendix.
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2. Symmetry Relations

The ballistics coefficients are further reduced by exploiting symmetry. For a railgun

projectile with an integrated armature, axisymmetry is lost, but inversion symmetry holds

in the b2 and b3 directions. This implies that when the sign of ξ2 or ξ3 is changed, the

components of the forces and moments, in the body basis, either do not change, or merely

change sign, depending on the component considered. For the forces,

F 1(ξ1, ξ2, ξ3) = F 1(ξ1,−ξ2, ξ3) (15a)

F 1(ξ1, ξ2, ξ3) = F 1(ξ1, ξ2,−ξ3) (15b)

F 2(ξ1, ξ2, ξ3) = −F 2(ξ1,−ξ2, ξ3) (15c)

F 2(ξ1, ξ2, ξ3) = F 2(ξ1, ξ2,−ξ3) (15d)

F 3(ξ1, ξ2, ξ3) = −F 3(ξ1, ξ2,−ξ3) (15e)

F 3(ξ1, ξ2, ξ3) = F 3(ξ1,−ξ2, ξ3) (15f)

For the moments,

K1(ξ1, ξ2, ξ3) = −K1(ξ1,−ξ2, ξ3) (16a)

K1(ξ1, ξ2, ξ3) = −K1(ξ1, ξ2,−ξ3) (16b)

K2(ξ1, ξ2, ξ3) = K2(ξ1,−ξ2, ξ3) (16c)

K2(ξ1, ξ2, ξ3) = −K2(ξ1, ξ2,−ξ3) (16d)

K3(ξ1, ξ2, ξ3) = K3(ξ1, ξ2,−ξ3) (16e)

K3(ξ1, ξ2, ξ3) = −K3(ξ1,−ξ2, ξ3) (16f)

These relations can be used to eliminate either odd or even terms in the tensor expansion,

greatly reducing the number of terms that have to be considered. The number of independent

terms is also greatly reduced simply due to the fact that multiplication commutes, i.e.,

coefficients that differ by only a permutation of the lower indices can be taken as equal.

3. Orientational Forces

The orientational forces correspond to lift and drag, which in the body basis are resolved

into axial and normal forces. Applying the symmetry relations and keeping terms up to
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third order in ξi gives

F 1 = a1 + b11ξ
1 + c111(ξ

1)2 + c122(ξ
2)2 + c133(ξ

3)2 + (17a)

d1
111(ξ

1)3 + 3d1
122ξ

1(ξ2)2 + 3d1
133ξ

1(ξ3)2 (17b)

F 2 =
[
b22 + 2c212ξ

1 + 3d2
112(ξ

1)2 + 3d2
332(ξ

3)2 + d2
222(ξ

2)2
]
ξ2 (17c)

F 3 =
[
b33 + 2c313ξ

1 + 3d3
113(ξ

1)2 + 3d3
223(ξ

2)2 + d3
333(ξ

3)3
]
ξ3 (17d)

Expanding to third order in α and gathering like terms gives

F 1

F 0
= CXα0 + α2(CXα2c cos2 ϕ+ CXα2s sin2 ϕ) (18a)

F 2

F 0
= α cosϕ

[
C2
Nα0 + α2(C2

Nα2c cos2 ϕ+ C2
Nα2s sin2 ϕ)

]
(18b)

F 3

F 0
= α sinϕ

[
C3
Nα0 + α2(C3

Nα2c cos2 ϕ+ C3
Nα2s sin2 ϕ)

]
(18c)

Here, C are the dimensionless orientational force coefficients, subscripted by X for the axial

force, and N for the normal force. The subscript αn refers to the order of α the coefficient

multiplies, the subscript c or s refers to multiplication by cos2 ϕ or sin2 ϕ, and the superscript

indicates the component of force affected. The C coefficients are supposed to depend only

on Mach number. The characteristic force F 0 is

F 0 =
1

2
ρ(r)V 2A (19)

where ρ(r) is the local mass density of the atmosphere, V is the effective velocity |v −w|,

and A is a reference area, typically the largest transverse cross section of the projectile.

4. Orientational Moments

In the general case of two-fold inversion symmetry, an axial moment appears that, of

course, vanishes in the axisymmetric case. This moment causes ϕ to tend toward an integer

multiple of π/2. Since this has an effect reminiscent of “righting a ship,” we call it the roll

righting moment. The moments are expanded in the components of v1 just like the forces:

Ki = ai + bijξ
j + cijkξ

jξk + dijklξ
jξkξl + · · · (20)
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Here, the coefficients a, b, etc., are re-used to avoid notational clutter. Applying the sym-

metry relations and keeping terms up to third order in ξi gives

K1 = 2c123ξ
2ξ3 + 6d1

123ξ
1ξ2ξ3 (21a)

K2 =
[
b23 + 2c213ξ

1 + 3d2
113(ξ

1)2 + 3d2
223(ξ

2)2 + d2
333(ξ

3)2
]
ξ3 (21b)

K3 =
[
b32 + 2c312ξ

1 + 3d3
112(ξ

1)2 + 3d3
332(ξ

3)2 + d3
222(ξ

2)2
]
ξ2 (21c)

Expanding to third order in α and gathering like terms gives

K1

K0
= C1

Mα2α2 sin 2ϕ (22a)

K2

K0
= α sinϕ

[
C2
Mα0 + α2(C2

Mα2c cos2 ϕ+ C2
Mα2s sin2 ϕ)

]
(22b)

K3

K0
= α cosϕ

[
C3
Mα0 + α2(C3

Mα2c cos2 ϕ+ C3
Mα2s sin2 ϕ)

]
(22c)

Here, C are the dimensionless orientational moment coefficients, annotated similarly to

the force coefficients. The axial coefficient characterizes the roll righting moment, while

the transverse coefficients correspond to the usual overturning moment. The characteristic

moment K0 is given by

K0 =
1

2
ρ(r)V 2A` (23)

where ` is a length characteristic of the projectile (in the axisymmetric case, the diameter

is usually used).

5. Ballistician’s Quasi-Expansion

The small angle expansion used above allows one to develop a consistent ordering in the

single parameter α. However, experience has evidently shown [2] that if the substitution

α → sinα is made everywhere in the expressions for the ballistic coefficients, accuracy is

improved. In utilizing the quasi-expansion, an important difference between the velocity

basis and the body basis should be noted. In the velocity basis, the force is resolved into lift

and drag, while in the body basis it is resolved into normal and axial forces. Among these

four components of force, only drag has the characteristic of remaining non-zero for any α.

In contrast, the axial force vanishes for α = π/2. In the quasi-expansion, one would like to

recover this characteristic of the axial force. This can be easily accomplished by multiplying

the axial force by cosα.
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B. Terms due to Angular Momentum

1. Slow Spin Expansion

Typically, the dependence of the forces and moments on the angular momentum of the

body is weak compared to its dependence on orientation and momentum. A suitable pa-

rameter in which to expand this weak dependence is

ωi =
`Ωi

V
(24)

In words, this is the ratio of the tangential velocity of a typical body element as it rotates

about the reference point, R, to the velocity of the whole body in the atmosphere. The slow

spin expansion is then

Ki = bijω
j + cijkω

jωk + · · · (25)

where the symbols b and c are re-used. N.b. the above Ki is to be added to the orienta-

tional Ki described in section III A. For this reason, including a zero order term would be

redundant.

2. Spin and Pitch Damping

In exterior ballistics, the damping of angular momentum is typically separated into “spin

damping” and “pitch damping” terms. This terminology conforms well to a rifle bullet,

where the angular velocity is strongly peaked in the b1 direction. In the more general case,

spin damping appears on an equal footing in all three coordinates:

K1

K0
= C1

Mqω
1 (26a)

K2

K0
= C2

Mqω
2 (26b)

K3

K0
= C3

Mqω
3 (26c)

Here, a linear approximation is used, with symmetry forbidding linear cross-couplings. The

C1
Mq coefficient is what ballisticians call the spin damping coefficient, conventionally denoted

Clp. After assuming axisymmetry, C2
Mq and C3

Mq would be combined into a single CMq called

the pitch damping coefficient.
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3. Magnus Moment

The Magnus force is seldom important in exterior ballistics, even for a rapidly spinning

rifle bullet [2]. However, the Magnus moment can be important in terms of stability. The

Magnus moment is the one effect we consider where the orientational and angular momentum

dependence is not additively separable. Put another way, the magnus moment does not come

from either the orientational expansion (11) or the slow spin expansion (25) since each term

contains factors from both. The lowest order Magnus moment is

Ki = cijkξ
jωk (27)

where the symbol c is re-used. Since the Magnus moment is only important for spinning

projectiles, assume ω1 � ω2 and ω1 � ω3. Then,

K2

K0
= C2

Mpω
1α cosϕ (28a)

K3

K0
= C3

Mpω
1α sinϕ (28b)

This effect is not expected to be important for a railgun projectile, but is included in the

NRL exterior ballistics model so that spinning projectiles can be treated.

IV. CFD SIMULATIONS AND BALLISTIC TRAJECTORIES

A. CFD Modeling of a Standard Bullet

In order to determine the ballistic coefficients discussed above, either experiments have to

be devised and carried out, or an extensive CFD modeling effort has to be undertaken. Since

the accuracy of the CFD models depends on the numerical mesh in a non-trivial way, it is

important to carry out some form of code validation for various mesh parameters. Although

the necessary data is not yet available for the projectile of interest, one can validate the

CFD models using an existing, well characterized projectile. Evidently, one such projectile

is the 0.308” 168 grain Sierra International (SI) bullet [2].

Fig. 4 shows a simulation of the SI bullet in flight at Mach 2.5. The pressure contours

are calculated using the commercial code CFD++, produced by Metacomp, Inc., which will

be used for all the CFD calculations in this report. The numerical meshes used in this work
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FIG. 4: False color image of pressure developed by the 168 grain Sierra International bullet at

Mach 2.5, as computed by CFD++.

were created using Capstone Meshing and Geometry (MG) [3]. The double precision version

of CFD++ is used throughout, because, for meshes with triangles as small as 100 µm, it

was found that single precision calculations cannot reduce the residual below 10−4. All the

results reported here had residuals between 10−5 and 10−4. CFD++ has a turbulence model

[4], and supports a wall function technique for treating unresolved boundary layers. For

the simulations reported here, the turbulence parameters were initialized with the values

k = 4.34 m2/s2, and ε = 8610 m2/s3. Here, k is the turbulent kinetic energy per unit mass,

and ε is the energy dissipation rate per unit mass. The turbulent viscosity is k2/ε = 0.0022

m2/s, similar to the viscosity of ambient air. The boundary conditions at the surface of the

bullet were either inviscid surface tangency, or used a no-slip condition with a wall function.

Capstone MG has the capability of creating boundary layer meshes, but these are not used

in the present study.

Consider first numerical evaluation of the drag coefficient of the SI bullet, with various

Mach numbers, mesh parameters, and boundary layer models. The drag coefficient is sup-

posed to be insensitive to temperature and pressure, but for definiteness we consider an

atmosphere with T = 288 K and P = 1.01×105 Pa. For the zero-yaw drag, one may exploit

axisymmetry, resulting in an effective two dimensional mesh. The six sets of mesh param-

eters used in this report are summarized in table I [8]. For the two dimensional cases, the

mesh elements are triangular. The overall size of the mesh is characterized by the number

of triangles. Generally the triangles are close enough to equilateral so that a single length,

L, characterizes their size. The size of the smallest triangle in the mesh is Lmin and the size

of the largest one is Lmax. Note that although mesh B has smaller triangles than mesh C,
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TABLE I: Parameters for Meshes

Mesh Label Dimensions Triangles or Lmin Lmax

Tetrahedrons (calibers) (calibers)

A 2 486 0.14 6.0

B 2 7976 0.042 0.87

C 2 44895 0.053 0.49

D 2 134530 0.011 0.40

E 3 689431 0.019 2.29

F 3 2557714 0.019 1.45

FIG. 5: View of the two 3D meshes used in this report. Only the surface mesh is shown.

mesh C has many more triangles. This is because for mesh B, the triangles are allowed to

grow more rapidly as the distance from the body is increased. The practice of growing the

triangles in this way follows from the expectation that the highest resolution is needed near

the body.

The effect of the boundary layer model is illustrated in Fig. 6, where the drag coefficients

given in [2] are compared with CFD++ calculations using M = {1.4, 1.8, 2.0, 2.2, 2.5} and

mesh D. The results of using inviscid surface tangency are shown in Fig. 6(a), while the

results of using the wall function technique are shown in Fig. 6(b). The inviscid surface

tangency condition gives results that are accurate to three digits for M = 1.4, 1.8, and

2.5. For M = 2.0 and 2.2, the error is similar for either boundary condition. The fact
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FIG. 6: Comparison of drag coefficients as computed by CFD++ with tabulated values from [2]. In

(a), the calculation uses an inviscid surface tangency condition for the bullet. In (b), the calculation

uses a wall function to approximate the effects of the boundary layer. The wall function tends to

over-estimate the viscous drag, which for the considered parameters appears to be negligible.

that the wall function over-estimates the drag in every case, while inviscid surface tangency

produces accurate results in most cases, suggests that the viscous drag, for the parameters

considered, is in reality negligible. In the examples considered, the Reynolds number, Re,

ranges between 105 and 106. The boundary layer thickness is ∼ `/
√
Re ≈ 10 µm, so that

the total mass of the fluid in regions of shear flow is very small. Therefore, the momentum

transferred from the body to the shear flow region is also small, and for the purpose of

computing the drag coefficient, one might as well neglect the boundary layer altogether.

The effect of the various mesh parameters on the accuracy of the computed drag coefficient

is illustrated in Fig. 7. The accuracy of a given mesh is characterized by the root-mean-

squared (RMS) deviation from the known data:

〈
δC2

D

〉1/2
=

√√√√ 1

N

N∑
i=1

[CD(Mi)− C∗D(Mi)]2 (29)

Here, Mi is the set of Mach numbers considered, CD is the drag coefficient as computed

using a particular mesh, and C∗D is the tabulated drag coefficient from [2]. The RMS error
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FIG. 7: Effect of mesh parameters on accuracy of drag coefficient: (a) RMS error in drag coefficient

as a function of the total number of triangles in the mesh, and (b) as a function of the size of the

smallest triangle. The progression in (b) is not monotonic due to the effect of the different growth

rate of the triangles used in meshes B and C.

vs. the number of mesh triangles is shown in Fig. 7(a). As expected, the error diminishes

with increasing number of triangles, although not very rapidly. When plotted vs. Lmin, the

error does not vary monotonically. In particular, the error for mesh C is smaller than that

for mesh B, even though mesh B has a slightly smaller Lmin. Evidently, the larger number of

triangles associated with mesh C, which corresponds to a smaller ∇L, improves the accuracy

of the calculation substantially. Similarly, comparing the accuracy of C and D shows that

decreasing Lmin a factor of five, while holding Lmax roughly fixed, reduces the error by less

than a factor of two. The conclusion is that both Lmin and ∇L should be small, which

generally means Lmax should be small and the number of triangles should be large.

In order to compute ballistic coefficients at non-zero yaw angles, three dimensional sim-

ulations are required. The coefficients for a given Mach number are recovered by fitting the

quasi-expansion to the simulated forces and moments at several yaw angles. One simulation

is needed for each yaw angle. This process has to be repeated for each Mach number. In

this report seven yaw angles at a single Mach number of M = 2.5 are considered. The

simulation results are summarized in Fig. 8. The simulations agree rather roughly with the

tabulated data, for both meshes E and F. In the case of the drag data of Fig. 8(b), it is
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FIG. 8: CFD++ simulations in three dimensions of the SI bullet at Mach 2.5: (a) pressure on the

surface of the bullet for α = 0.44, (b) drag force vs. α, (c) lift force vs. α, and (d) overturning

moment vs. α. The open circles are the results using mesh E, the crosses are the results using

mesh F, and the curves are drawn using ballistic coefficients from [2]. The ballistic coefficients

implied by the simulation data can be determined by fitting the data to the quasi-expansion in

sinα, leading to the results given in table II.

not surprising that the simulation over-estimates the drag force, since the same trend is

exhibited by axisymmetric simulations. In three dimensions it is even more difficult to use

enough cells to obtain high accuracy. In the case of the lift data of Fig. 8(c), the simulation

data is quite accurate for small angles. Since Ref. [2] does not provide data on the cubic

lift coefficient, the divergence of the results at large angles is not a concern. In the case of

the overturning moment data of Fig. 8(d), the primary source of disagreement is that the

simulation underestimates the cubic term.

Using the data from mesh F, the angular dependence of the drag force, lift force, and

overturning moment, are fitted to the quasi-expansion to obtain the ballistic coefficients.
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TABLE II: Ballistic Coefficients Computed on Mesh F

Coefficient CFD++ Tabulated

CD0 0.349 0.320

CDα2 4.4 4.4

CLα0 2.97 2.85

CLα2 2.84 n/a

CMα0 2.15 2.56

CMα2 -0.96 -4.4

These are displayed in table II alongside the data from Ref. [2]. The largest disagreement

occurs for the cubic overturning moment.

B. Ballistics Modeling of a Standard Rifle Shot

In order to verify that the generalized ballistics model developed in this report reduces

to the correct solution for a standard rifle shot, trajectories are computed for the 168 grain

SI bullet. The parameters for the shot are taken from Ref. [2]. The atmospheric conditions

are T = 288.15 K and ρ = 1.225 kg/m3. The conditions at the muzzle are v = 792 m/s,

Ω · v1 = 16336 rad/s, Ω · v2 = 25 rad/s, Ω · v3 = 0, and v1 · e2 = sin(50.46′) (the shot is

elevated by 50.46 minutes of arc, which is supposed to result in grounding at 1000 yards).

Initially, bi · vi = 1, for each i. The rotation of the Earth is neglected. The reduction to

a rigid, axisymmetric body is accomplished by taking a = 0, δM = 0, and by applying the

transformations in table IV.

The epicyclic pitch and yaw phenomenon associated with spinning projectiles leads to

orbits in phase space that offer obvious visual cues when two calculations give different

results. In particular, it is useful to display parametric plots of the pitch and yaw angles,

with time as the parameter. Here, the pitch angle is defined as sin−1(v2 · b1) and the yaw

angle is defined as sin−1(v3 · b1). The parametric plots are displayed in Figs. 9 (a), (b),

and (c). The full solution is shown in (a), which should be, and is, indistinguishable from

Fig. 9.2 of Ref. [2]. The solution in (b) is the result when the magnus moment is neglected.

Although the magnus effect is small, the effect of neglecting it is discernable. The solution
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FIG. 9: Calculation of a standard rifle shot trajectory using NRL ballistics code. The epicyclic

pitch and yaw during the first 15 yards is shown for (a) the full set of forces and moments, (b)

without magnus moment, and (c) without pitch damping moment. The velocity as a function of

range is given in panel (d).

in (c) is the result when the pitch damping moment is neglected. The velocity of the bullet

over several hundred meters, with all forces and moments included, is shown in Fig. 9(d).

The knee in the curve around 800 meters is due to passage through the transonic regime.

The vertical and horizontal position of the bullet is shown in Fig. 10. The upper panel

shows the height of the bullet above the ground vs. range. The bullet is grounded after

1000 yards (914 meters), exactly as expected. The lower panel shows the horizontal drift of
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FIG. 10: Calculation of a standard rifle shot trajectory using NRL ballistics code, showing vertical

position, R · e2 and horizontal position, R · e3, of the 168 grain Sierra International bullet.

the bullet over the same range. The drift in the positive e3 direction comes about because

of the positive sign of Ω · e2 at the muzzle. The periodic swerving motion of the bullet can

be seen, particularly near the end of its range.

C. Preliminary Smart Bullet Modeling

A smart bullet is a bullet with a steering mechanism and an autopilot. The theory and

practice of autopilots is, of course, highly developed [5]. In this section an extremely simple

autopilot is used to demonstrate the viability of skid weight steering. This simple autopilot

is capable of correcting up to 5 degree aiming errors at 150 meters.

Autopilots are often categorized as skid to turn (STT) or bank to turn (BTT). The

abstract projectile design in Fig. 2 allows for either. If the skid weight is allowed to move

in a plane, it provides an STT capability. The roll wheel allows for BTT capability, when

complemented by linear motion of the skid weight. In this preliminary test, only the STT

capability is employed. The ballistic coefficients correspond to a stabilized 168 grain SI
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bullet. The stabilization (using fins, say) is assumed to lead to CMα0 = −0.1, and CLα0 = 3.0,

at all times during the flight. The numerical shot is taken from a barrel without any rifling

(the projectile does not spin). The mass of the skid weight is δm/m = 0.02. Roughly, the

autopilot moves the skid weight in the direction of the target, and opposite the direction of

the velocity. Specifically,

δv · b1 = 0 (30a)

δv · b2 = δv0 tanh [A(t1 − v1) · b2] (30b)

δv · b3 = δv0 tanh [A(t1 − v1) · b3] (30c)

where δv0 is the maximum velocity of the skid weight, A is a dimensionless parameter

characterizing how sensitive the velocity is to misalignments, and t1 is a unit vector in

the direction of the target. In the following example, δv0 = 0.03 m/s, and A = 10. The

displacement of the skid weight is limited to 3 millimeters.

The results from the calculation are shown in Fig. 11. The shot is deliberately aimed to

the right of the target by 4◦ (when looking downrange). The vertical aim is dead-on, but

does not account for gravity. The target is 150 meters from the muzzle. Figs. 11(a) and (b)

show that when the autopilot is off, the bullet misses the target by 10 meters. Figs. 11(c)

and (d) show that with the autopilot, the bullet hits the target to within a few centimeters.

V. CONCLUSIONS

Full trajectory modeling of non-axisymmetric, hypervelocity projectiles can be modeled

using the ballistics code described in this report. The form of the forces and moments, for

small angles of attack, can be deduced from symmetry principles. The model includes a pro-

vision for internal moving parts that allow for steering of the projectile. A simple autopilot

example shows that steering by means of an internal skid weight is viable, in principle. In

order to apply the ballistics model to a real railgun projectile, which may have a novel shape,

extensive CFD calculations have to be carried out. The commercial code CFD++ repro-

duces published drag coefficients on a well resolved axisymmetric mesh. Three dimensional

calculations are more challenging due to the need for very large numbers of tetrahedrons,

but preliminary simulations reproduce the most important ballistic coefficients, to within

about 10%, for small angles of attack. The CFD results might be improved by using a
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FIG. 11: Trajectory of 168 grain SI bullet with and without a simple STT autopilot: (a) vertical

plane without autopilot, (b) horizontal plane without autopilot, (c) vertical plane with autopilot,

and (d) horizontal plane with autopilot. The target is shown as the red circle.

boundary layer mesh, or increasing the number of tetrahedrons.
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Appendix A: Transformation from Velocity Basis to Body Basis

The ballistic coefficients utilized in this report are given in terms of the body system

of coordinates. That is, the forces and moments are resolved in directions parallel and

perpendicular to the axes of inversion symmetry. Many tables of ballistic coefficients for

axisymmetric projectiles are given in the velocity system of coordinates. That is, the forces

and moments are resolved in directions parallel and perpendicular to the effective velocity.

In order to connect the ballistic coefficients in the two commonly used coordinate systems,

it is most convenient to express the total forces and moments in terms of abstract vector

formulas. This is done in table III. If the components are expressed in the body basis, and

the resulting expressions expanded in powers of sinα (the quasi-expansion should be used

in this context, including multiplication of the axial force by cosα), it is straightforward to
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TABLE III: Vector Forces and Moments for Axisymmetric Projectiles

Name Formula

Drag Force −F 0(CD0 + CDα2α2)v1

Lift Force F 0(CLα0 + CLα2α2)v1 × (b1 × v1)

Overturning Moment K0(CMα0 + CMα2α2)v1 × b1

Spin Damping Moment K0Clpb1(ω · b1)

Pitch Damping Moment K0CMqb1 × (ω × b1)

Magnus Moment K0CMp(ω · b1)b1 × (v1 × b1)

TABLE IV: Transformation of Ballistic Coefficients for Axisymmetric Projectiles

Effect Body Coefficients Velocity Coefficients

Zero Yaw Axial Force CXα0 −CD0

Yaw Axial Force CXα2c = CXα2s −CDα2 + CLα0

Linear Normal Force CiNα0 −CD0 − CLα0

Cubic Normal Force CiNα2c = CiNα2s
1
2CLα0 − CDα2 − CLα2

Roll Righting Moment CMr 0

Linear Overturning Moment C2
Mα0 CMα0

Cubic Overturning Moment C2
Mα2c = C2

Mα2s CMα2

Linear Overturning Moment C3
Mα0 −CMα0

Cubic Overturning Moment C3
Mα2c = C3

Mα2s −CMα2

Spin Damping Moment C1
Mq Clp

Pitch Damping Moment CiMq CMq

Magnus Moment CiMp CMp

collect like powers, thereby determining the body coefficients. The result of this procedure is

summarized in table IV. In the table, the superscript i refers to either the b2 or b3 direction.

Appendix B: Ballistic Coefficients in Terms of Tensor Coefficients

The ballistic coefficients derived in this report are related to the coefficients in a more

general tensor expansion. The tensor coefficients are denoted by a, b, c, etc.. There are
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four sets of such tensor coefficients, one for the forces, one for the orientation-dependent

moments, one for the spin-dependent moments, and one for the Magnus moment. In order

to avoid notational clutter, the same alphabetic sequence is used in each of the four cases,

despite the fact that each tensor expansion is independent.

Each ballistic coefficient is proportional to a sum of tensor coefficients. Table V lists all the

ballistic coefficients considered herein, and the particular combination of tensor coefficients

that each is proportional to. The constant of proportionality contains factors such as F 0

for a force, K0 for a moment, and possibly expressions involving orientational angles and

normalized angular velocities.

The information in table V is not needed to carry out an exterior ballistics calculation, nor

to determine the ballistic coefficients, which have to be determined from CFD calculations

or experiments. It is provided only for completeness.
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TABLE V: Ballistic and Tensor Coefficients

Coefficient Symbol Tensor Expansion

Axial Force CXα0 a1 + b11 + c111 + d1
111

Axial Force CXα2c −1
2b

1
1 − c111 + c122 − 3

2d
1
111 + 3d1

122

Axial Force CXα2s −1
2b

1
1 − c111 + c133 − 3

2d
1
111 + 3d1

133

Normal Force C2
Nα0 b22 + 2c212 + 3d2

112

Normal Force C2
Nα2c −c212 − 3d2

112 + d2
222

Normal Force C2
Nα2s −c212 − 3d2

112 + 3d2
332

Normal Force C3
Nα0 b33 + 2c313 + 3d3

113

Normal Force C3
Nα2c −c313 − 3d3

113 + d3
333

Normal Force C3
Nα2s −c313 − 3d3

113 + 3d3
223

Roll Righting Moment CMr c123 + 3d1
123

Overturning Moment C2
Mα0 b23 + 2c213 + 3d2

113

Overturning Moment C2
Mα2c −c213 − 3d2

113 + 3d2
223

Overturning Moment C2
Mα2s −c213 − 3d2

113 + d2
333

Overturning Moment C3
Mα0 b32 + 2c312 + 3d3

112

Overturning Moment C3
Mα2c −c312 − 3d3

112 + 3d3
332

Overturning Moment C3
Mα2s −c312 − 3d3

112 + d3
222

Spin Damping Moment C1
Mq b11

Pitch Damping Moment C2
Mq b22

Pitch Damping Moment C3
Mq b33

Magnus Moment C2
Mp c213

Magnus Moment C3
Mp c312
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